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Proposition 0.1 (Exercise 4-6). Let M be a non-empty smooth compact manifold. Then
there is no smooth submersion F : M → Rk for any k > 0.

Proof. Suppose there is a smooth submersion F : M → Rk. By Proposition 4.28, F is an
open map, so F (M) is open in Rk. Since F is continuous, it maps compact sets to compact
sets, so F (M) is compact in Rk, and hence it is closed and bounded. As Rk is connected, the
only sets that are open and closed are ∅ and Rk. M is non-empty so F (M) is non-empty,
and F (M) is bounded so F (M) 6= Rk. Thus F (M) can be no subset of Rk, so no such F
exists.

Note: Exercise 4-10 was not assigned, but 4-13 said to use it, so I’m including a solution.

Proposition 0.2 (Exercise 4-10). Let π : Rn+1 \ {0} → RPn be the standard projection, and
let q = π|Sn. Then q is a smooth covering map.

Proof. First, we claim that q is a proper map. Let K ⊂ RPn be compact. As RPn is
Hausdorff, K is closed, so q−1(K) is closed in Sn. Since Sn is compact, any closed subset
is compact, thus q−1(K) is compact, thus q is proper. Now we show that q is a local
diffeomorphism. Define

S+
i = {(x1, . . . xn+1 ∈ Sn|xi > 0}
S−i = {(x1, . . . xn+1 ∈ Sn|xi < 0}

Then we claim that q|S+
i

is a diffeomorphism. It is bijective because each [x] ∈ RPn has a
unique representative on the open half-sphere, and it is smooth because it is a composition
of q with a (smooth) inclusion map.

We also show that the inverse is also smooth. Let (Ũ , φ̃) be a standard coordinate chart
in RPn (defined in Example 1.5 of Lee) and (U, φ) be a coordinate chart in S+

i (we can
take U = S+

i and φ to be the projection (x1, . . . xn+1) 7→ (x1, . . . x̂i, . . . , xn+1)). Then the
coordinate representation of q|−1

S+
i

is

φ ◦ (q|S+
i

)−1 ◦ φ̃−1(u1, . . . un) = φ ◦ (q|S+
i

)−1[u1, . . . ui−11, ui, . . . , un]

= φ(u1, . . . ui−1, 1, ui, . . . un)

= (u1, . . . , un)
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which is the identity map, and clearly smooth. Thus q|S+
i

is a diffeomorphism. By a similar

argument, q|S−
i

is a diffeomorphism. Thus q is a local diffeomorphism, since every p ∈ Sn

is in some neighborhood S±i . Then by Proposition 4.46, every proper local diffeomorphism
between nonemtpy connected manifolds is a smooth covering map, so q is a smooth covering
map.

Proposition 0.3 (Exercise 4-13). Let F : S2 → R4 be the map F (x, y, z) = (x2−y2, xy, xz, yz).
F descends to a smooth embedding of RP2 into R4.

Proof. We define F̃ : RP2 → R4 by F̃ ◦ q(v) = F (v). First we need to show that this is

well-defined. (Note that q is surjective, we can define F̃ just on the image of q as we have
done.) Suppose q(v), q(w) ∈ RP2 such that q(v) = q(w). Then v = w or v = −w, and if
v = (x, y, z) we have

F (−v) = F (−x,−y,−z) = (x2 − y2, xy, xz, yz) = F (v)

so then F (v) = F (w). Thus F̃ is well-defined. Now we show that F̃ is a smooth embedding.

On some neighborhood, q is a diffeomorphism, so on that neighborhood F̃ = F ◦ q−1, so F̃
is locally smooth, hence it is smooth. (I’m not sure how to do the rest, sorry.)

Proposition 0.4 (Exercise 7-2). Let G be Lie group, and let m : G × G → G be the
multiplication map (g, h) 7→ gh and let i : G → G be the inversion map g 7→ g−1. The
differential m∗ : TeG⊕ TeG→ TeG at the identity is given by

m∗(X, Y ) = X + Y

and the differential i∗ : TeG→ TeG is given by

i∗(X) = −X

Proof. Let X, Y ∈ TeG. By linearity of the differential,

m∗(X, Y ) = m∗((X, 0) + (0, Y )) = m∗(X, 0) +m∗(0, Y )

so we just need to compute m∗(X, 0) and m∗(0, Y ). Let γ : (−ε, ε) → G be a curve with
γ(0) = e and γ′(0) = X. Then

m∗(X, 0) =
d

dt
m(γ(t), γ(0))

∣∣∣∣
t=0

=
d

dt
(γ(t) ∗ e)

∣∣∣∣
t=0

= γ′(0) = X

and likewise if α is a curve with α(0) = e and α′(0) = Y , we can do the same computation
to get m∗(0, Y ) = Y . Thus

m∗(X, Y ) = m∗(X, 0) +m∗(0, Y ) = X + Y

Now we compute the differential of the inversion map at the identity. Let γ : (−ε, ε) be a
curve with γ(0) = e and γ′(0) = X. We have

e = m(γ(t), i ◦ γ(t))

so
0 = m∗(X, i∗X) = X + i∗X =⇒ i∗X = −X
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Proposition 0.5 (for Exercise 7-14). U(n) is Lie subgroup of GL(n,C) of dimension n2.

Proof. Define a smooth map φ : GL(n,C) → M(n,C) by A 7→ A∗A (where A∗ is the
conjugate transpose. Then U(n) is the level set φ−1(In). Let GL(n,C) act on itself by right
multiplication, that is, (A,B) 7→ A · B = AB. We also define a right action M(n,C) ×
GL(n,C)→ M(n,C) by

X · A = A∗XA

And φ is equivariant with respect to these two actions, as we see:

φ(A ·B) = φ(AB) = (AB)∗AB = B∗A∗AB = B∗φ(A)B = φ(A) ·B

Note that the action of GL(n,C) on itself by right multiplication is transitive, so by the
Equivariant Rank Theorem (Theorem 7.25 in Lee), F has constant rank. Thus by Theorem
5.12, the level set φ−1(In) is a properly embedded submanifold with codimension equal to
the rank of φ, so U(n) is a Lie subgroup of GL(n,C).

Now we compute the rank of φ. It has constant rank, so we just compute the rank at
In. Let γ : (−ε, ε)→ GL(n,C) be the smooth curve γ(t) = In + tB for some B ∈ GL(n,C).
Then

φ∗(B) =
d

dt
(φ ◦ γ)(t)

∣∣∣∣
t=0

=
d

dt
(In + tB)∗(In + tB)

∣∣∣∣
t=0

=
d

dt
(I∗nIn + tB∗In + I∗ntB + t2B∗B)

∣∣∣∣
t=0

=
d

dt
(In + tB∗ + tB + t2B∗B)

∣∣∣∣
t=0

= (B∗ +B + 2tB∗B)|t=0

= B∗ +B

Thus the image of φ∗ is a subset of the space of Hermitian matrices. Conversely, if B is a
Hermitian matrix, then φ∗

(
1
2
B
)

= B so B is in the image of φ∗. Thus the image of φ∗ is
precisely the set of Hermitian matrices. While the Hermitian matrices do not form a vector
space over C, they do form a vector space of dimension n2 over R. Thus the image of φ∗ has
dimension at least n2, but since M(n,C) has dimension n2, the rank of φ cannot exceed n2.
Thus U(n) is a Lie subgroup of codimension zero.

Proposition 0.6 (Exercise 7-14). For n ≥ 1, SU(n) is a properly embedded (n2 − 1)-
dimensional Lie subgroup of U(n).

Proof. Let det : U(n) → S1 be the smooth determinant map. It maps into S1 because the
determinant of a unitary matrix is a unit complex number. It is a homomorphism, so it is
Lie group homomorphism, with SU(n) as its kernel. Thus by Proposition. 7.16, SU(n) is a
properly embedded Lie subgroup of U(n).

The detminant map is also surjective: If we modify the identity matrix to have eit in the
top right corner, then this modified matrix is a special unitary matrix with determinant eit.
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Thus by the Global Rank Theorem (Theorem 4.12), det is a smooth submersion. Thus it
has rank 1, so again using Proposition 7.16, SU(n) has dimension n2 − 1.

Lemma 0.7 (for Exercise 6). Let X be a smooth vector field on a smooth manifold M and
let γ : R → M be a nonnonstant periodic integral curve for X. That is, there exists T > 0
such that γ(t + T ) = γ(t) for t ∈ R. Then there exists T ′ such that γ(s) = γ(t) if and only
if s− t = kT ′ for some k ∈ Z. (We call T ′ the period of γ.)

Proof. Consider the set T = {T ∈ R : γ(t + T ) = γ(t) for all t ∈ R}. We claim that T is
closed. Suppose that x ∈ R \ T (if there is no x, then 0 ∈ T and γ is constant). If for every
ε > 0, there exists T ∈ T ∩ B(x, ε), so we have γ(t + T ) = γ(t) with T < ε. This implies
that γ is a constant curve, since if γ were non-constant, it would only differ from γ(t) on
intervals of arbitrarily small width. Thus there exists ε > 0 such that B(x, ε) ⊂ R \ T . Thus
R \ T is open, so T is closed.

Now let T ′ = inf T . Since T is closed, it contains its infimum, so T ′ ∈ T . Since γ is
nonconstant, T ′ 6= 0. Suppose that s− t = kT ′ for some k ∈ Z. Then

γ(s) = γ(t+ kT ′) = γ(t+ (k − 1)T ′) = . . . γ(t)

if k is positive, and a similar argument holds if k is negative. Conversely, suppose that
γ(s) = γ(t). Then

{s′ ∈ R : γ(s) = γ(s′)} = {s+ kT ′ : k ∈ Z}
since T ′ is the infimum over all possible periods of γ. Thus t = s+ kT ′ =⇒ t− s = kT ′ for
some k ∈ Z.

Proposition 0.8 (Exercise 6). Let X be a smooth vector field on a smooth manifold M and
let γ : I →M be a nonconstant integral curve of X, where I is an open interval of R. Then
γ is a smooth immersion, and if γ is not injective, then there exists a smooth embedding
φ : S1 →M and c > 0 such that γ(t) = φ(eict).

Proof. First we show that γ is an immersion. Let θ be the flow generated by X. Since γ
is non-constant, there is some t0 ∈ I such that γ′(t0) = Xγ(t0) 6= 0, so γ(t0) is a regular
point. Then by Proposition 9.21, θγ(t0) is a a smooth immersion. As θγ(t0) is an integral
curve that coincides with γ at the point γ(t0), by uniqueness we have θγ(t0) = γ, hence γ is
an immersion.

Now suppose that γ is not injective. Then there exist s, t ∈ I such that γ(s) = γ(t) and
s 6= t. Let T be the period of γ, as defined in the previous lemma, and let c = 2π/T . Then
define φ : S1 →M by φ(eit) = γ(t/c). Then we have

φ(eict) = γ(tc/c) = γ(t)

We claim that φ is injective. Let eit1 , eit2 ∈ S1 such that φ(eit1) = φ(eit2). Then

γ(t1/c) = γ(t2/c) =⇒ t1/c = t2/c+ kT =⇒ t1 = t2 + 2πk =⇒ eit1 = eit2+2πk = eit2

Thus φ is injective. It is also an immersion, since it is a composition of the immersions
t 7→ t/c and γ. Since S1 is compact, by Proposition 4.22 we have that φ is a smooth
embedding.
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